Reverse inequalities on chaotically geometric mean via Specht ratio
نویسندگان
چکیده
منابع مشابه
Some weighted operator geometric mean inequalities
In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...
متن کاملSome improvements of numerical radius inequalities via Specht’s ratio
We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...
متن کاملOn Inequalities for Hypergeometric Analogues of the Arithmetic-geometric Mean
In this note, we present sharp inequalities relating hypergeometric analogues of the arithmetic-geometric mean discussed in [5] and the power mean. The main result generalizes the corresponding sharp inequality for the arithmetic-geometric mean established in [10].
متن کاملOn Reverse Pinsker Inequalities
New upper bounds on the relative entropy are derived as a function of the total variation distance. One bound refines an inequality by Verdú for general probability measures. A second bound improves the tightness of an inequality by Csiszár and Talata for arbitrary probability measures that are defined on a common finite set. The latter result is further extended, for probability measures on a ...
متن کاملOn Statistics of Log-Ratio of Arithmetic Mean to Geometric Mean for Nakagami-m Fading Power
To assess the performance of maximum-likelihood (ML) based Nakagami m parameter estimators, current methods rely on Monte Carlo simulation. In order to enable the analytical performance evaluation of ML-based m parameter estimators, we study the statistical properties of a parameter Δ, which is defined as the log-ratio of the arithmetic mean to the geometric mean for Nakagami-m fading power. Cl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2003
ISSN: 1331-4343
DOI: 10.7153/mia-06-47